Price Regulation

Contents

Economic efficiency
Monopoly Price
Competitive Price
$1^{\text {st }}$ best pricing
$2^{\text {nd }}$ best pricing: Ramsey pricing

Economic Efficiency

Max. general welfare of consumers and producers
Max. the sum of consumers' surplus and producers' surplus
Example of goals that conflicts with the economic efficiency
Lifeline telephone service
911, 119
welfare of indigent
Subsidies (cross subsidy)
from urban customers to isolated subscribers universal service
Inefficient entrant with high cost product

Monopoly Price with One Product

Price is determined at Q that maximizes the profit $\pi=\mathrm{TR}$ - TC
$\mathrm{d} \pi / \mathrm{dQ}=\mathrm{dTR} / \mathrm{dQ}-\mathrm{dTC} / \mathrm{dQ}=0$
P is determined at Q where $\mathrm{MR}=\mathrm{MC}$
Best for supplier
$\mathrm{MR}=\mathrm{MC}$: not the point where R is maximized

그림 10－1 利閵極大化 產出量의 도출
（총수입，총비용）

$M R, M C$

Monopoly Price with One Product

Competitive Price

Improve the monopoly situation
Maximize the consumer's surplus (CS)
Price is determined at Q where $\pi=0$
See the previous figure
$1^{\text {st }}$ best pricing: $\mathrm{P}=\mathrm{MC}$
Best for consumer

Competitive Price

Perfectly Competitive Market

1. Market populated with large number of small firms
2. Local constant returns to scale neither economies nor diseconomies of scale

Zero economic profit, $\pi=0$
However, it includes gross earnings sufficient to pay interest to provide return to equity holders
i.e. "fair Rate of Return"

Case of $\mathrm{MC}<\mathrm{AC}$

As long as average cost is declining by the scale of economy, $\mathrm{MC}<\mathrm{AC}$

Ramsey Price with one product

Compromise the monopoly rule and competitive rule Applied to the field of "regulation"
As long as average cost is declining (with Economy's of scale) $\mathrm{MC}<\mathrm{AC}$
If $\mathrm{P}=\mathrm{MC}$, then the $1^{\text {st }}$ best pricing loose money
i.e., TC $>$ TR: $\pi<0$

How to correct it?
If $\mathrm{P}=\mathrm{AC}$, then $\mathrm{TC}=\mathrm{TR}: \pi=0$
$2^{\text {nd }}$ best pricing: $\mathrm{P}=\mathrm{AC}$

Ramsey Price with one product

Ramsey Price with Two Products

Price to cover the total cost of two products
Max consumer surplus
s.t. producer's profit $\pi=0$

Question: How high to raise the price to cover the total cost of two products with least harms to the two types of consumers?

When $\Delta P_{E}=\Delta P_{I}$

Product A: Long Dist
(Elastic)

Product B: Local Exchange
(Inelastic)

Ramsey Price with Two Products

If the price is raised equally in the two products, loose more CS in elastic product than in inelastic

The rule is Ramsey pricing ($2^{\text {nd }}$ best pricing) "Raise price more in inelastic market than in elastic"

Inverse elasticity
The difference between price and MC is inversely related to the price elasticity of demand

Ramsey Price with Two Products

Price to cover the total cost of two products
Max consumer surplus
s.t. producer's profit $\pi=0$: financially may infeasible
$\mathrm{TC}=\mathrm{TC}_{\mathrm{E}}+\mathrm{TC}_{\mathrm{I}}=\mathrm{P}_{\mathrm{E}} \mathrm{Q}_{\mathrm{E}}+\mathrm{P}_{\mathrm{I}} \mathrm{Q}_{\mathrm{I}}=\mathrm{TR}, \pi=0$
Modify the price to cover total cost and to minimize the deviation from MC

Ramsey Pricing

Raise price more in inelastic market than in elastic market: raise price more that yields larger revenue Burden more customer who have inelastic demand

The way prices are charged

Exactly opposite to the Ramsey pricing!
Universal Service: bring more people in the network

Telecom Price Index

	Laspeyres	Paasche	Fisher	100 in 2000
1996	37.71	96.92	60.45	114.62
1997	36.91	86.22	56.41	106.95
1998	37.55	83.23	55.90	105.99
1999	37.47	82.43	55.58	105.38
2000	36.67	75.86	52.74	100.00
2001	34.93	72.30	50.26	95.28
2002	35.99	66.66	48.98	92.86

	Total	Local	Long Line	Public	Cellular	LM
1996년	127.1	88.9	115.2	80.2	137.4	n.a
1997년	115.9	93.5	105.2	86.7	122.3	n.a
1998년	108.9	100.0	100.0	100.0	112.1	n.a
1999년	108.1	100.0	100.0	100.0	110.9	n.a
2000년	100.0	100.0	100.0	100.0	100.0	100.0
2001년	96.5	91.1	97.5	100.0	95.2	95.8
2002년	92.3	86.7	107.5	126.7	89.1	85.8
변화율	-5.8%	-0.4%	-1.3%	$+7.8 \%$	-8.1%	-7.1%
가중치	100%	10.4%	6.8%	1.0%	61.9%	15.9%
통계청 발표 전화요금 지수 연도별 추이	$(2000$ 년 기준 = 100)					

통계청 발표 전화요금 지수 연도별 추이 (2000년 기준 = 100)

Price index of each service

Competition, scale of economy -> low cellular price
Regulation, low interconnection price -> low LM price

Application of Ramsey Pricing is not straight

forward
Ramsey pricing requires elasticities
When the elasticity is endogenously determined by regulatory process, Ramsey price may not satisfy economic efficiency
Regulatory barriers to entry or pricing that hinder obtaining elasticities:

1. Barrier to entry erected by FCC and state regulators
2. MFJ: Business restrictions
3. Delay in tariff authorization
4. The franchising process
5. The inefficient allocation and constraints on the use of spectrum

Perfectly Contestable Market as a guide for

regulation

Entry/Exit are easy and costless - no sunk investment Ideal market than the perfectly competitive market Generalization of perfect competition
A model for regulation
Perfect contestability
Ensures the same profit as in a competitive market Excludes any firm that is inefficient
Cross-subsidy cannot endure (why?)
Prices for economic efficiency and Pareto optimality

Summary (Price Regulation)

Economic efficiency
Max. welfare of consumers and producers
Monopoly Price: $\mathrm{MR}=\mathrm{MC}$
$1^{\text {st }}$ best pricing: $\mathrm{P}=\mathrm{MC}$
Ramsey pricing: $\mathrm{P}=\mathrm{AC}$
Ramsey pricing with two products
"Raise price more in inelastic market than in elastic"
Inverse elasticity

